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SUMMARY DATA ACQUISITION

Evaluating antiproliferative drug activity on cells in vitro is a widespread practice 
in basic biomedical research and drug discovery. Typically, quantitative 
assessment relies on constructing dose–response curves from end-point 
assays, for which the de facto standard metric is the number of viable cells 72 h 
after drug addition. Using theoretical modeling and experimentation, we have 
shown that current metrics of antiproliferative small molecule effect suffer from 
time-dependent bias, leading to inaccurate assessments of parameters such as 
drug potency and efficacy. We proposed the drug-induced proliferation (DIP) 
rate, the slope of the line on a plot of cell population doublings versus time, as an 
alternative, time-independent metric that eliminates bias due to proliferation 
rates and drug activity delays. The DIP rate analytical platform incorporates 
time-lapse cell imaging, automated image processing and cell counting. Feature 
acquisition (e.g., division or death) at the single-cell level is also available, if 
desired. These data can be incorporated into mathematical models to predict 
cellular response dynamics to drug treatment, as well as both genetic and 
non-genetic perturbations. Here we present our approach for scaling the DIP rate 
platform to a high-throughput screening format capable of obtaining data for 
approximately 13,000 unique conditions at 12 time points over 5 days. With 
appropriate, measurable conversion coefficients, it should be possible to 
translate this information to in vivo experiments and other applications.

Cells are engineered to express fluorescent protein-conjugated histone H2B and a cell 
cycle indicator (mAG-gem1-110) as described (Tyson et al., Nat Methods 2012, 
doi:10.1038/nmeth.2138). Cells are seeded into 384-well plates at densities ranging from 
200–800 cells per well. Up to 42 plates can be run in a single experiment in the HTS core 
and each plate is uniquely identified using barcodes. Plates are loaded into a Cytomat 
cell incubator and transported one at a time to the barcode reader and into an 
ImageXpress Micro XL bioimager (Molecular Devices). Images are acquired in each well 
(308 wells per plate) continually over 72 h when medium and drug are replaced followed 
by another 48 h of imaging. A video of the automated image acuisition can be seen by 
scanning the QR codes below on your smartphone or tablet.

Example composite image

Red   =  histone H2B
Green=  cell cycle reporter
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To accommodate the very large datasets (over 200,000 images and >2 TB per 
experiment), a parallel-processing-based image analysis pipeline was developed. We 
used freely available software tools and custom-written code in R and Python and 
Python-based tools for distributed processing (RabbitMQ and Celery)

Three randomly selected 
single-cell clones of the PC9 lung 
adenocarcinoma cell line 
harboring mutant EGFR exhibit 
distinct kinetics in response to 
EGFR inhibition with erlotinib 
(left). Note that due to the 
delayed effect of the drug, all 
sublines appear similarly 
responsive to drug at 72 h  but 
show divergent behaviors 
thereafter. 

How drug effect is measured 
significantly affects the resultant 
dose–response curves (below). 

NOTE: All three sublines have essentially the 
same EC50 (~ 30 nM) but have very different 

growth kinetics when [erlotinib] > 100 nM

Cell counts at 72 h
Drug-induced 

proliferation rate

one experiment results in 
>200,000 image processing tasks

32 cores simultaneously 
processing tasks require ~16 h

Organize file info and other 
parameters for Python/OpenCV 

image processing into many 
thousands of unique “tasks”

Send “task” list to 
RabbitMQ for distribution

Celery “workers” running on 
separate processing units pull 
tasks from the task queue and 
generate separate output files

Assemble file information 
(plate ID, well name, fluorescent 
channel, image name, exported 
from ImageXpress in HTS core)

Scan code for video of 
automated image acquisition 
(robotic plate handling)

Scan code for video of example 
time-series image stack: 
PC9 cells + 1 nM osimeritnib; 
nuclei only; grayscale

CELL POPULATION DYNAMICS AFFECT 
DOSE–RESPONSE CURVE PARAMETERS
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HIGH-THROUGHPUT IMAGE PROCESSING
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DATA VISUALIZATION AND ANALYSIS

Thunor
Example dataset: 6 BrCa cell lines, 36 drugs, 10 concentrations each drug, technical duplicates, 
images acquired every ~2h for 120h (>200,000 measurements). Cell count data are uploaded into 
the Thunor web repository and combined with other data into the DIP rate database.

Growth curves Dose–response curves Dose–response parametersSingle dose–response 
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A web-based data 
management and 
visualization tool

As of Feb, 2018, the DIP rate 
database contains data from 
over 30 cell lines and over 
150 drugs

Cell lines enriched in 
EGFRmut LuCa, BRAFmut 
melanoma, and 
triple-negative BrCa

Drugs include the 
FDA-approved oncology 
panel (126 drugs)
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